Application des éléments discrets et de la reconstruction par covariants à la modélisation de l'endommagement anisotrope

Réunion thématique du GDR-GDM, ENS Paris-Saclay, 23/11/2022.

Flavien Loiseau – flavien.loiseau@ens-paris-saclay.fr Encadré par: Rodrigue Desmorat, Cécile Oliver-Leblond

Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS - Laboratoire de Mécanique Paris-Saclay, 91190, Gif-sur-Yvette, France.

CORS

Quasi-brittle materials: Observations

An exemple of structure

A tensile test on concrete (Terrien, 1980)

Quasi-brittle materials: Observations

An exemple of structure

A tensile test on concrete (Terrien, 1980)

Context
00.00Virtual testing
00000Damage variable
00000State model
000000Conclusion
00000References4 / 28

Quasi-brittle materials: Damaging process (Landis, 1999)

Context 000●	Virtual testing	Damage variable 0000	State model 000000	Conclusion 0000	References	5 / 28

Objectives

Objective of the project

Formulating an anisotropic damage model for quasi-brittle material

Objectives

Objective of the project

Formulating an anisotropic damage model for quasi-brittle material

Structure of a damage model

$$\begin{split} \mathcal{V} &= \{ \boldsymbol{\varepsilon}, \mathbf{D}, \ldots \} & \text{(Set of variables)} \\ \rho \psi &= \frac{1}{2} \boldsymbol{\varepsilon} : \mathbf{E}(\mathbf{D}) : \boldsymbol{\varepsilon} & \text{(State potential)} \\ \frac{\partial \mathbf{D}}{\partial t} &= \ldots & \text{(Damage evolution)} \end{split}$$

Notations

- D damage variable
- $\blacktriangleright \ {\bf E}({\bf D})$ effective elasticity tensor

Constraints

- $\blacktriangleright \ {\bf E}({\bf D})$ is positive definite
- Positive dissipation

Context 000●	Virtual testing 0000000	Damage variable 0000	State model 000000	Conclusion 0000	References	5 / 28

Objectives

Objective of the project

Formulating an anisotropic damage model for quasi-brittle material

Structure of a damage model

$\mathcal{V} = \{oldsymbol{arepsilon}, \mathbf{D},\}$	(Set of variables)
$ \rho \psi = \frac{1}{2} \boldsymbol{\varepsilon} : \mathbf{E}(\mathbf{D}) : \boldsymbol{\varepsilon} $	(State potential)
$\frac{\partial \mathbf{D}}{\partial t} = \dots$	(Damage evolution)

Objectives of the presentation

- 1. Gather data on the behavior of quasi-brittle material
- 2. Quantify the micro-cracking
- 3. Model the impact of micro-cracking on the relation between ε and σ

Notations

- ► D damage variable
- $\blacktriangleright \ {\bf E}({\bf D})$ effective elasticity tensor

Constraints

- $\blacktriangleright \ {\bf E}({\bf D})$ is positive definite
- Positive dissipation

ContextVirtual testing
0000Damage variable
0000State model
00000ConclusionReferences7 / 28

Discrete model – Beam-particle model (Vassaux et al., 2016)

Related prior work: (D'Addetta et al., 2002), (Delaplace, 2008), ...

 Context
 Virtual testing
 Damage variable
 State model
 Conclusion
 References

 0000
 000000
 00000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 <t

Discrete model – Beam-particle model (Vassaux et al., 2016)

Remark Contact/friction disabled. 7 / 28

Related prior work: (D'Addetta et al., 2002), (Delaplace, 2008), ...

Discrete model – Beam-particle model (Vassaux et al., 2016)

Damage variable

Virtual testing

000000

Remark Contact/friction disabled.

Info

State model

 ✓ Accurate representation of fracture process (Oliver-Leblond, 2019)

References

- ✓ Reproductibilty
- $\pmb{\mathsf{X}}$ Complex to identify

Related prior work: (D'Addetta et al., 2002), (Delaplace, 2008), ...

Context 0000	Virtual testing 00●0000	Damage variable 0000	State model 000000	Conclusion 0000	References	8 / 28

Context 0000	Virtual testing 00●0000	Damage variable 0000	State model 000000	Conclusion	References	8 / 28

Context 0000	Virtual testing 00●0000	Damage variable 0000	State model 000000	Conclusion 0000	References	8 / 28

Step 29 Stress peak

Context 0000	Virtual testing ००●००००	Damage variable 0000	State model 000000	Conclusion 0000	References	8 / 28

Step 29 Stress peak

Step 31 Post peak

Measurement of the elasticity tensor – Idea

Representative Volume Element (RVE)

How to measure the effective elasticity tensor ?

ContextVirtual testing
0000Damage variableState model
00000ConclusionReferences9 / 28

Measurement of the elasticity tensor – Idea

Representative Volume Element (RVE)

How to measure the effective elasticity tensor ?

Given,

• $\underline{\varepsilon}^{(i)}$ – 3 linearly independent strains

• $\underline{\sigma}^{(i)}$ – 3 associated stresses

the effective elasticity tensor is given by,

$$\underline{\underline{E}}(\mathbf{D}) = \left(\left[\underline{\sigma}^{(1)} | \underline{\sigma}^{(2)} | \underline{\sigma}^{(3)} \right] \left[\underline{\varepsilon}^{(1)} | \underline{\varepsilon}^{(2)} | \underline{\varepsilon}^{(3)} \right]^{-1} \right)^{S}$$
Kelvin notation: $\underline{\sigma}^{(i)} = \left[\sigma_{xx}^{(i)}, \sigma_{yy}^{(i)}, \sqrt{2}\sigma_{xy}^{(i)} \right]^{T}$

Measurement of the elasticity tensor - Procedure

1. Apply 3 periodic elastic loadings $\mathbf{u}(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{u}(\mathbf{x}) + \varepsilon_{imp} \cdot \mathbf{x}$ $\varepsilon_{imp}^{(i)} \propto \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \varepsilon_{imp}^{(i)} \propto \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \quad \varepsilon_{imp}^{(i)} \propto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Measurement of the elasticity tensor - Procedure

2. Measure strain (Bagi, 1996)

$$ar{oldsymbol{arepsilon}} = rac{1}{V}\sum_{b=0}^{N_b}rac{\mathbf{u}_b^{(1)}+\mathbf{u}_b^{(2)}}{2}\odot\mathbf{n}_b$$

 ε_{i}

Measurement of the elasticity tensor - Procedure

1. Apply 3 periodic elastic loadings

 $\mathbf{u}(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{u}(\mathbf{x}) + \boldsymbol{\varepsilon}_{imp} \cdot \mathbf{x}$

$$_{i)}_{mp} \propto \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \boldsymbol{\varepsilon}_{imp}^{(i)} \propto \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \boldsymbol{\varepsilon}_{imp}^{(i)} \propto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

- 2. Measure strain (Bagi, 1996)
- 3. Measure stress (Drescher et al., 1972)

$$ar{oldsymbol{arepsilon}} = rac{1}{V}\sum_{b=0}^{N_b}rac{\mathbf{u}_b^{(1)}+\mathbf{u}_b^{(2)}}{2}\odot\mathbf{n}_b$$

$$\bar{\boldsymbol{\sigma}} = \frac{1}{V} \sum_{p_a=0}^{N_{p_a}} \mathbf{x}^{p_a} \odot \mathbf{F}_{ext \to p_a}$$

Measurement of the elasticity tensor - Procedure

1. Apply 3 periodic elastic loadings

 $\mathbf{u}(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{u}(\mathbf{x}) + \boldsymbol{\varepsilon}_{imp} \cdot \mathbf{x}$

2. Measure strain (Bagi, 1996)

3. Measure stress (Drescher et al., 1972)

 $oldsymbol{arepsilon}_{imp} \propto egin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix} oldsymbol{arepsilon}_{imp} \propto egin{bmatrix} 0 & 0 \ 0 & 1 \end{bmatrix} oldsymbol{arepsilon}_{imp} \propto egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$

 $\bar{\boldsymbol{\varepsilon}} = \frac{1}{V} \sum_{b=0}^{N_b} \frac{\mathbf{u}_b^{(1)} + \mathbf{u}_b^{(2)}}{2} \odot \mathbf{n}_b \qquad \qquad \bar{\boldsymbol{\sigma}} = \frac{1}{V} \sum_{p_a=0}^{N_{p_a}} \mathbf{x}^{p_a} \odot \mathbf{F}_{ext \to p_a}$

4. Calculate elasticiy tensor $\underline{\underline{E}}(\mathbf{D}) = \left(\left[\underline{\sigma}^{(1)} | \underline{\sigma}^{(2)} | \underline{\sigma}^{(3)} \right] \left[\underline{\varepsilon}^{(1)} | \underline{\varepsilon}^{(2)} | \underline{\varepsilon}^{(3)} \right]^{-1} \right)^{S}$

t

 Context
 Virtual testing
 Damage variable
 State model
 Conclusion
 References
 11/28

 0000
 00000●0
 0000
 00000
 0000
 0000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000

State model

Conclusion

References

12 / 28

Virtual testing – Conclusion

Dataset generation

- ► 36 micro-structures
- ► 21 loadings
- ► 756 evolutions
- ► 76 356 patterns

State model

Conclusion

References

12 / 28

Virtual testing – Conclusion

Dataset generation

- ► 36 micro-structures
- ► 21 loadings
- ► 756 evolutions
- ► 76 356 patterns

Intermediate conclusion

- Measurement of elasticity tensor from beam-particle model
- Generation of a dataset

Distance to orthotropy in 2D: (Antonelli et al., 2022)

 $\mathbf{E} \cong (\mu, \kappa, \mathbf{d}', \mathbf{H}) \in \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^2(\mathbb{R}^2) \oplus \mathbb{H}^4(\mathbb{R}^2)$

 $\mathbf{E} \cong (\mu, \kappa, \mathbf{d}', \mathbf{H}) \in \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^2(\mathbb{R}^2) \oplus \mathbb{H}^4(\mathbb{R}^2)$

$$\begin{array}{ll} \textbf{Reconstruction} \quad (\mu,\kappa,\mathbf{d}',\mathbf{H}) \mapsto \mathbf{E} = \underbrace{2\mu \mathbf{J} + \kappa \mathbf{1}_2 \otimes \mathbf{1}_2}_{\mathbf{Iso}} + \underbrace{\frac{1}{2} \left(\mathbf{d}' \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}'\right)}_{\mathbf{Dil}} + \mathbf{H} \end{array}$$

 $\mathbf{E} \cong (\mu, \kappa, \mathbf{d}', \mathbf{H}) \in \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^2(\mathbb{R}^2) \oplus \mathbb{H}^4(\mathbb{R}^2)$

$$\textbf{Reconstruction} \quad (\mu, \kappa, \mathbf{d}', \mathbf{H}) \mapsto \mathbf{E} = \underbrace{2\mu \mathbf{J} + \kappa \mathbf{1}_2 \otimes \mathbf{1}_2}_{\mathbf{Iso}} + \underbrace{\frac{1}{2} \left(\mathbf{d}' \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}' \right)}_{\mathbf{Dil}} + \mathbf{H}$$

Decomposition $\mathbf{E} \mapsto (\mu, \kappa, \mathbf{d}', \mathbf{H})$ where $\mathbf{d} = \operatorname{tr}_{12} \mathbf{E}, \ \mathbf{v} = \operatorname{tr}_{13} \mathbf{E},$

$$\begin{cases} \mu = \frac{1}{8} \left(2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d} \right) \\ \kappa = \frac{1}{4} \operatorname{tr} \mathbf{d} \end{cases} \text{ are invariants and, } \begin{cases} \mathbf{d}' = \mathbf{d} - \frac{1}{2} \operatorname{tr} \mathbf{d} \mathbf{1}_2 \\ \mathbf{H} = \mathbf{E} - \mathbf{Iso} - \mathbf{Dil} \end{cases} \text{ are covariants.}$$

 $\mathbf{E} \cong (\mu, \kappa, \mathbf{d}', \mathbf{H}) \in \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^2(\mathbb{R}^2) \oplus \mathbb{H}^4(\mathbb{R}^2)$

$$\begin{array}{ll} \textbf{Reconstruction} \quad (\mu,\kappa,\mathbf{d}',\mathbf{H}) \mapsto \mathbf{E} = \underbrace{2\mu \mathbf{J} + \kappa \mathbf{1}_2 \otimes \mathbf{1}_2}_{\mathbf{Iso}} + \underbrace{\frac{1}{2} \left(\mathbf{d}' \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}'\right)}_{\mathbf{Dil}} + \mathbf{H} \end{array}$$

Decomposition $\mathbf{E} \mapsto (\mu, \kappa, \mathbf{d}', \mathbf{H})$ where $\mathbf{d} = \operatorname{tr}_{12} \mathbf{E}, \ \mathbf{v} = \operatorname{tr}_{13} \mathbf{E},$

$$\begin{cases} \mu = \frac{1}{8} \left(2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d} \right) \\ \kappa = \frac{1}{4} \operatorname{tr} \mathbf{d} \end{cases} \text{ are invariants and, } \begin{cases} \mathbf{d}' = \mathbf{d} - \frac{1}{2} \operatorname{tr} \mathbf{d} \mathbf{1}_2 \\ \mathbf{H} = \mathbf{E} - \mathbf{Iso} - \mathbf{Dil} \end{cases} \text{ are covariants.}$$

 $\label{eq:Damage variable} \mathsf{D} = (\mathbf{d}_0 - \mathbf{d}) \cdot \mathbf{d}_0^{-1} = \mathbf{1}_2 - \frac{1}{2\kappa_0} \mathbf{d} \iff \mathbf{d} = 2\kappa_0(\mathbf{1}_2 - \mathbf{D})$

 $\mathbf{E} \cong (\mu, \kappa, \mathbf{d}', \mathbf{H}) \in \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^2(\mathbb{R}^2) \oplus \mathbb{H}^4(\mathbb{R}^2)$

$$\begin{array}{ll} \textbf{Reconstruction} \quad (\mu,\kappa,\mathbf{d}',\mathbf{H}) \mapsto \mathbf{E} = \underbrace{2\mu \mathbf{J} + \kappa \mathbf{1}_2 \otimes \mathbf{1}_2}_{\mathbf{Iso}} + \underbrace{\frac{1}{2} \left(\mathbf{d}' \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}'\right)}_{\mathbf{Dil}} + \mathbf{H} \end{array}$$

Decomposition $\mathbf{E} \mapsto (\mu, \kappa, \mathbf{d}', \mathbf{H})$ where $\mathbf{d} = \operatorname{tr}_{12} \mathbf{E}, \ \mathbf{v} = \operatorname{tr}_{13} \mathbf{E},$

$$\begin{cases} \mu = \frac{1}{8} \left(2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d} \right) \\ \kappa = \frac{1}{4} \operatorname{tr} \mathbf{d} \end{cases} \text{ are invariants and, } \begin{cases} \mathbf{d}' = \mathbf{d} - \frac{1}{2} \operatorname{tr} \mathbf{d} \mathbf{1}_2 \\ \mathbf{H} = \mathbf{E} - \mathbf{Iso} - \mathbf{Dil} \end{cases} \text{ are covariants.}$$

 $\label{eq:Damage variable} \mathsf{D} = (\mathbf{d}_0 - \mathbf{d}) \cdot \mathbf{d}_0^{-1} = \mathbf{1}_2 - \frac{1}{2\kappa_0} \mathbf{d} \iff \mathbf{d} = 2\kappa_0(\mathbf{1}_2 - \mathbf{D})$

 $\mathbf{E} \cong (\mu, \kappa, \mathbf{d}', \mathbf{H}) \in \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^2(\mathbb{R}^2) \oplus \mathbb{H}^4(\mathbb{R}^2)$

$$\begin{array}{ll} \textbf{Reconstruction} \quad (\mu,\kappa,\mathbf{d}',\mathbf{H}) \mapsto \mathbf{E} = \underbrace{2\mu \mathbf{J} + \kappa \mathbf{1}_2 \otimes \mathbf{1}_2}_{\mathbf{Iso}} + \underbrace{\frac{1}{2} \left(\mathbf{d}' \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}'\right)}_{\mathbf{Dil}} + \mathbf{H} \end{array}$$

Decomposition $\mathbf{E} \mapsto (\mu, \kappa, \mathbf{d}', \mathbf{H})$ where $\mathbf{d} = \operatorname{tr}_{12} \mathbf{E}, \ \mathbf{v} = \operatorname{tr}_{13} \mathbf{E},$

$$\begin{cases} \mu = \frac{1}{8} \left(2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d} \right) \\ \kappa = \frac{1}{4} \operatorname{tr} \mathbf{d} \end{cases} \text{ are invariants and, } \begin{cases} \mathbf{d}' = \mathbf{d} - \frac{1}{2} \operatorname{tr} \mathbf{d} \mathbf{1}_2 \\ \mathbf{H} = \mathbf{E} - \mathbf{Iso} - \mathbf{Dil} \end{cases} \text{ are covariants.}$$

 $\label{eq:Damage variable} \mathsf{D} = (\mathbf{d}_0 - \mathbf{d}) \cdot \mathbf{d}_0^{-1} = \mathbf{1}_2 - \frac{1}{2\kappa_0} \mathbf{d} \iff \mathbf{d} = 2\kappa_0(\mathbf{1}_2 - \mathbf{D})$

Damage variable – Conclusion

Distance to symmetry strata

$$\Delta_{\mathcal{C}}(\mathbf{E}) = \min_{\mathbf{E}^* \in \mathcal{C}} \frac{\|\mathbf{E} - \mathbf{E}^*\|}{\|\mathbf{E}\|}$$

Indicates the type of damage variable

At least a 2-order damage tensor

Damage variable – Conclusion

Distance to symmetry strata

$$\Delta_{\mathcal{C}}(\mathbf{E}) = \min_{\mathbf{E}^* \in \mathcal{C}} \frac{\|\mathbf{E} - \mathbf{E}^*\|}{\|\mathbf{E}\|}$$

Indicates the type of damage variable
At least a 2-order damage tensor

Harmonic decomposition

$$egin{aligned} &\mu,\kappa,\mathbf{d}',\mathbf{H})\mapsto\mathbf{E}=\ &2\mu\mathbf{J}+\kappa\mathbf{1}_2\otimes\mathbf{1}_2\ &+rac{1}{2}\left(\mathbf{d}'\otimes\mathbf{1}_2+\mathbf{1}_2\otimes\mathbf{d}'
ight)\ &+\mathbf{H} \end{aligned}$$

- Guide the definition of the damage variable $\mathbf{D} = \mathbf{1}_2 \frac{1}{2\kappa_0} \mathbf{d}$
- $\blacktriangleright \ \kappa({\bf D})$ and ${\bf d}'({\bf D})$ are exact
- $\blacktriangleright \ \mu(\mathbf{D})$ and $\mathbf{H}(\mathbf{D})$ need to be modelled

Shear modulus $\mu = \frac{1}{8} \left(2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d} \right)$ model as a function of damage

Shear modulus $\mu = \frac{1}{8} \left(2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d} \right)$ model as a function of damage Let us introduce

Damage variable

Virtual testing

State model

00000

References

Shear modulus $\mu = \frac{1}{8} (2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d})$ model as a function of damage Let us introduce

State model ○●○○○○

$$D_{\mathbf{v}} = \frac{\operatorname{tr} \mathbf{v}_0 - \operatorname{tr} \mathbf{v}}{\operatorname{tr} \mathbf{v}_0}$$
$$\iff \operatorname{tr} \mathbf{v} = \operatorname{tr} \mathbf{v}_0 (1 - D_{\mathbf{v}}).$$

References

Shear modulus $\mu = \frac{1}{8} (2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d})$ model as a function of damage Let us introduce

State model

00000

$$D_{\mathbf{v}} = \frac{\operatorname{tr} \mathbf{v}_0 - \operatorname{tr} \mathbf{v}}{\operatorname{tr} \mathbf{v}_0}$$
$$\iff \operatorname{tr} \mathbf{v} = \operatorname{tr} \mathbf{v}_0 (1 - D_{\mathbf{v}}).$$

Virtual testing

Let us model $D_{\mathbf{v}}$ as a function of

$$I_n\left(\mathbf{D}\right) = \operatorname{tr}(\mathbf{D}^n) = D_1^n + D_2^n.$$

References

Shear modulus $\mu = \frac{1}{8} (2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d})$ model as a function of damage Let us introduce

State model

00000

Damage variable

$$D_{\mathbf{v}} = \frac{\operatorname{tr} \mathbf{v}_0 - \operatorname{tr} \mathbf{v}}{\operatorname{tr} \mathbf{v}_0}$$
$$\iff \operatorname{tr} \mathbf{v} = \operatorname{tr} \mathbf{v}_0 (1 - D_{\mathbf{v}}).$$

Virtual testing

Let us model $D_{\mathbf{v}}$ as a function of

$$I_n\left(\mathbf{D}\right) = \operatorname{tr}(\mathbf{D}^n) = D_1^n + D_2^n.$$

References

Analysis of the harmonic part

Harmonic square reconstruction (Oliver-Leblond et al., 2021) For an orthotropic elasticity tensor E_O , the harmonic part is

$$\mathbf{H}(\mathbf{E}_O) = \frac{2K_3}{I_2^2} \mathbf{d}' * \mathbf{d}'$$

where:

- $\blacktriangleright K_3 = \mathbf{d} : \mathbf{H} : \mathbf{d},$
- $\blacktriangleright I_2 = \mathbf{d}' : \mathbf{d}',$
- for a 2D 2-order harmonic tensor d', $\mathbf{d}' * \mathbf{d}' = \mathbf{d}' \otimes \mathbf{d}' - \frac{1}{2}(\mathbf{d}' : \mathbf{d}') \mathbf{J}.$

Context 0000	Virtual testing 0000000	Damage variable 0000	State model	Conclusion	References	19 / 28

Analysis of the harmonic part

Harmonic square reconstruction (Oliver-Leblond et al., 2021) For an orthotropic elasticity tensor E_O , the harmonic part is

$$\mathbf{H}(\mathbf{E}_O) = \frac{2K_3}{I_2^2} \mathbf{d}' * \mathbf{d}'$$

where:

- $\blacktriangleright K_3 = \mathbf{d} : \mathbf{H} : \mathbf{d},$
- $\blacktriangleright I_2 = \mathbf{d}' : \mathbf{d}',$
- for a 2D 2-order harmonic tensor d', $\mathbf{d}' * \mathbf{d}' = \mathbf{d}' \otimes \mathbf{d}' - \frac{1}{2} (\mathbf{d}' : \mathbf{d}') \mathbf{J}.$

Can K_3 be modelled using damage ?

Analysis of the harmonic part

Harmonic square reconstruction (Oliver-Leblond et al., 2021) For an orthotropic elasticity tensor E_O , the harmonic part is

$$\mathbf{H}(\mathbf{E}_O) = \frac{2K_3}{I_2^2} \mathbf{d}' * \mathbf{d}'$$

where:

- $\blacktriangleright K_3 = \mathbf{d} : \mathbf{H} : \mathbf{d},$
- $\blacktriangleright I_2 = \mathbf{d}' : \mathbf{d}',$
- for a 2D 2-order harmonic tensor d', $\mathbf{d}' * \mathbf{d}' = \mathbf{d}' \otimes \mathbf{d}' - \frac{1}{2} (\mathbf{d}' : \mathbf{d}') \mathbf{J}.$

Can K_3 be modelled using damage ?

Harmonic part H as a function of damage

Solution 1

Solution 0

Harmonic part H as a function of damage

Solution 1

Work in progress: Model $K_3(\mathbf{D})$

Solution 0

Harmonic part H as a function of damage

Solution 1

Work in progress: Model $K_3(\mathbf{D})$

Solution 0

Harmonic part H as a function of damage

Solution 1

Work in progress: Model $K_3(\mathbf{D})$

Solution 0

Harmonic part H as a function of damage

Solution 1

Work in progress: Model $K_3(\mathbf{D})$

Solution 0

Summary of model

If \mathbf{E}_0 and \mathbf{D} are known, the elasticity tensor can be modelled as

$$\mathbf{E}(\mathbf{D}) = 2\mu(\mathbf{D})\mathbf{J} + \kappa(\mathbf{D})\mathbf{1}_2 \otimes \mathbf{1}_2 + \frac{1}{2}\left(\mathbf{d}'(\mathbf{D}) \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}'(\mathbf{D})\right) + \mathbf{H}(\mathbf{D})$$

where,

The parameter $c_1 = \frac{\kappa_0}{2\mu_0 + \kappa_0}$ and the invariants of **D** are $I_n = tr(\mathbf{D}^n)$.

Context 0000	Virtual testing 0000000	Damage variable 0000	State model 00000●	Conclusion 0000	References	22 / 28
-----------------	----------------------------	-------------------------	-----------------------	--------------------	------------	---------

Model error estimation

Proportion of
$$\mathbf E$$
 s.t. $rac{\|\mathbf E-\mathbf E^{\mathrm{m}}\|}{\|\mathbf E_0\|} \leq e_t$

Context 0000	Virtual testing	Damage variable 0000	State model 00000●	Conclusion 0000	References	22 / 28
0000	0000000	0000	000000	0000		

Model error estimation

Model error estimation

Proportion of
$$\mathbf E$$
 s.t. $\frac{\|\mathbf E - \mathbf E^{\mathrm{m}}\|}{\|\mathbf E_0\|} \leq e_t$

Conclusion

Objectives of the presentation

- 1. Gather data on the behavior of quasi-brittle material
 - Virtual testing

Conclusion

Objectives of the presentation

- 1. Gather data on the behavior of quasi-brittle material
 - Virtual testing

$$\mathbf{D} = \mathbf{1}_2 - \frac{1}{2\kappa_0}\mathbf{d}$$

- 2. Quantify the micro-cracking
 - Definition of a damage variable

Conclusion

Objectives of the presentation

- 1. Gather data on the behavior of quasi-brittle material
 - Virtual testing

$$\mathbf{D} = \mathbf{1}_2 - \frac{1}{2\kappa_0} \mathbf{d}$$

- 3. Model the impact of micro-cracking on the relation between ε and σ
 - Exact models of $\kappa(\mathbf{D})$, $\mathbf{d}'(\mathbf{D})$
 - Modelling of $\mu(\mathbf{D})$, $\mathbf{H}(\mathbf{D})$

- 2. Quantify the micro-cracking
 - Definition of a damage variable

 Context
 Virtual testing
 Damage variable
 State model
 Conclusion
 References
 25 / 28

 0000
 0000
 0000
 0000
 0000
 0000
 0000

Perspectives

Objective of the project

Formulating an anisotropic damage model for quasi-brittle material

Formulation of a damage model

$$\begin{split} \mathcal{V} &= \{ \boldsymbol{\varepsilon}, \mathbf{D}, \ldots \} & (\text{Set of variables}) \\ \rho \psi &= \frac{1}{2} \boldsymbol{\varepsilon} : \mathbf{E}(\mathbf{D}) : \boldsymbol{\varepsilon} & (\text{State potential}) \\ \dot{\mathbf{D}} &= \ldots & (\text{Damage evolution}) \\ \textbf{Perspectives} & \end{split}$$

- $\blacktriangleright \ {\bf E}({\bf D})$ is positive definite
- Positive dissipation

 Context
 Virtual testing
 Damage variable
 State model
 Conclusion
 References
 25 / 28

 0000
 0000
 0000
 0000
 0000
 0000
 0000

Perspectives

Objective of the project

Formulating an anisotropic damage model for quasi-brittle material

Formulation of a damage model

$$\begin{split} \mathcal{V} &= \{ \boldsymbol{\varepsilon}, \mathbf{D}, \ldots \} & (\text{Set of variables}) \\ \rho \psi &= \frac{1}{2} \boldsymbol{\varepsilon} : \mathbf{E}(\mathbf{D}) : \boldsymbol{\varepsilon} & (\text{State potential}) \\ \dot{\mathbf{D}} &= \ldots & (\text{Damage evolution}) \end{split}$$

Perspectives

• Formulate a model of K_3 as a function of \mathbf{D}

- $\blacktriangleright \ {\bf E}({\bf D})$ is positive definite
- Positive dissipation

Perspectives

Objective of the project

Formulating an anisotropic damage model for quasi-brittle material

Formulation of a damage model

$$\begin{split} \mathcal{V} &= \{ \boldsymbol{\varepsilon}, \mathbf{D}, \ldots \} & \text{(Set of variables)} \\ \rho \psi &= \frac{1}{2} \boldsymbol{\varepsilon} : \mathbf{E}(\mathbf{D}) : \boldsymbol{\varepsilon} & \text{(State potential)} \\ \dot{\mathbf{D}} &= \ldots & \text{(Damage evolution)} \end{split}$$

Perspectives

- Formulate a model of K_3 as a function of \mathbf{D}
- $\blacktriangleright\,$ Formulate an evolution model for ${\bf D}\,$

- $\blacktriangleright \ {\bf E}({\bf D})$ is positive definite
- Positive dissipation

 Context
 Virtual testing
 Damage variable
 State model
 Conclusion
 References
 25 / 28

 0000
 0000
 00000
 0000
 0000
 0000

Perspectives

Objective of the project

Formulating an anisotropic damage model for quasi-brittle material

Formulation of a damage model

$$\begin{split} \mathcal{V} &= \{ \boldsymbol{\varepsilon}, \mathbf{D}, \ldots \} & \text{(Set of variables)} \\ \rho \psi &= \frac{1}{2} \boldsymbol{\varepsilon} : \mathbf{E}(\mathbf{D}) : \boldsymbol{\varepsilon} & \text{(State potential)} \\ \dot{\mathbf{D}} &= \ldots & \text{(Damage evolution)} \end{split}$$

Perspectives

- Formulate a model of K_3 as a function of \mathbf{D}
- $\blacktriangleright\,$ Formulate an evolution model for ${\bf D}$
- Study nonlocal damage via beam-particle model

- $\blacktriangleright \ {\bf E}({\bf D})$ is positive definite
- Positive dissipation

Merci pour votre attention !

Réunion thématique du GDR-GDM, ENS Paris-Saclay, 23/11/2022.

Flavien Loiseau - flavien.loiseau@ens-paris-saclay.fr Encadré par: Rodrigue Desmorat, Cécile Oliver-Leblond

Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS - Laboratoire de Mécanique Paris-Saclay, 91190, Gif-sur-Yvette, France.

cors
Context 0000	Virtual testing	Damage variable 0000	State model 000000	Conclusion	References	27 / 28

References I

- Backus, G. (1970). A geometrical picture of anisotropic elastic tensors. *Reviews of Geophysics*, 8(3), 633–671.
- Drescher, A., & de Josselin de Jong, G. (1972). Photoelastic verification of a mechanical model for the flow of a granular material. *Journal of the Mechanics and Physics of Solids*, 20(5), 337–340.
- Terrien, M. (1980). Emission acoustique et comportement mécanique post-critique d'un béton sollicité en traction. Bulletin de liaison des laboratoires des ponts et chaussees, 1980(105), 65–71.
- Bagi, K. (1996). Stress and strain in granular assemblies. *Mechanics of Materials*, 22(3), 165–177.
- Blinowski, A., Ostrowska-Maciejewska, J., & Rychlewski, J. (1996). Two-dimensional hooke's tensors isotropic decomposition, effective symmetry criteria [Number: 2]. Archives of Mechanics, 48(2), 325–345.
 - Landis, E. N. (1999). Micro-macro fracture relationships and acoustic emissions in concrete. *Construction and Building Materials*, *13*(1), 65–72.

Context 0000	Virtual testing	Damage variable 0000	State model 000000	Conclusion	References	28 / 28

References II

- D'Addetta, G. A., Kun, F., & Ramm, E. (2002). On the application of a discrete model to the fracture process of cohesive granular materials. *Granular Matter*, 4(2), 77–90.
- Delaplace, A. (2008). Modélisation discrète appliquée au comportement des matériaux et des structures.
- Vassaux, M., Oliver-Leblond, C., Richard, B., & Ragueneau, F. (2016). Beam-particle approach to model cracking and energy dissipation in concrete: Identification strategy and validation. *Cement and Concrete Composites*, 70, 1–14.
- Oliver-Leblond, C. (2019). Discontinuous crack growth and toughening mechanisms in concrete: A numerical study based on the beam-particle approach. Engineering Fracture Mechanics, 207, 1–22.
- Oliver-Leblond, C., Desmorat, R., & Kolev, B. (2021). Continuous anisotropic damage as a twin modelling of discrete bi-dimensional fracture. European Journal of Mechanics -A/Solids, 89, 104285.
 - Antonelli, A., Desmorat, B., Kolev, B., & Desmorat, R. (2022). Distance to plane elasticity orthotropy by euler-lagrange method. *Comptes Rendus. Mécanique*, *350*, 413–430.